Ionophore-mediated uptake of ciprofloxacin and vincristine into large unilamellar vesicles exhibiting transmembrane ion gradients.
نویسندگان
چکیده
A new method, based on the ion-translocating properties of the ionophores nigericin and A23187, is described for loading large unilamellar vesicles (LUVs) with the drugs vincristine and ciprofloxacin. LUVs composed of distearoylphosphatidylcholine/cholesterol (DSPC/Chol) (55:45 mol/mol) or sphingomyelin (SPM)/Chol (55:45 mol/mol) exhibiting a transmembrane salt gradient (for example, internal solution 300 mM MnSO4 or K2SO4; external solution 300 mM sucrose) are incubated in the presence of drug and, for experiments involving divalent cations, the chelator EDTA. The addition of ionophore couples the outward movement of the entrapped cation to the inward movement of protons, thus acidifying the vesicle interior. External drugs that are weak bases can be taken up in response to this induced transmembrane pH gradient. It is shown that both nigericin and A23187 facilitate the rapid uptake of vincristine and ciprofloxacin, with entrapment levels approaching 100% and excellent retention in vitro. Following drug loading, the ionophores can be removed by gel exclusion chromatography, dialysis, or treatment with biobeads. In vitro leakage assays (addition of 50% mouse serum) and in vivo pharmacokinetic studies (in mice) reveal that the A23187/Mn2+ system exhibits superior drug retention over the nigericin/K+ system, and compares favorably with vesicles loaded by the standard DeltapH or amine methods. The unique features of this methodology and possible benefits are discussed.
منابع مشابه
Dopamine accumulation in large unilamellar vesicle systems induced by transmembrane ion gradients.
Transmembrane movement of dopamine in response to K+ or H+ ion gradients has been investigated. It is shown that dopamine can accumulate rapidly into large unilamellar vesicles (LUVs) composed of egg phosphatidylcholine exhibiting either a K+ diffusion potential (delta psi; negative inside) or a pH gradient (inside acidic). This can result in entrapped dopamine concentrations of 30-40 mM and in...
متن کاملInfluence of ion gradients on the transbilayer distribution of dibucaine in large unilamellar vesicles.
The uptake of dibucaine into large unilamellar vesicles in response to proton gradients (delta pH; inside acidic) or membrane potentials (delta psi; inside negative) has been investigated. Dibucaine uptake in response to delta pH proceeds rapidly in a manner consistent with permeation of the neutral (deprotonated) form of the drug, reaching a Henderson-Hasselbach equilibrium where [dibucaine]in...
متن کاملA novel method for the efficient entrapment of calcium in large unilamellar phospholipid vesicles.
A technique for the efficient entrapment of high concentrations of Ca2+ in large unilamellar phospholipid vesicles (LUVs), using the carboxylic acid antibiotic ionophore A23187 (calcimycin) is demonstrated. It is shown that rapid A23187-mediated entrapment of Ca2+, corresponding to essentially 100% sequestration of the extravesicular cation may be achieved for egg yolk phosphatidylcholine LUVs ...
متن کاملLipid asymmetry induced by transmembrane pH gradients in large unilamellar vesicles.
We have investigated the influence of transmembrane pH gradients across large unilamellar vesicle membranes on the transbilayer distributions of simple lipids with weak base and weak acid characteristics. Trinitrobenzenesulfonic acid labeling results consistent with a rapid and complete migration of stearylamine and sphingosine to the inner monolayer of the large unilamellar vesicles are observ...
متن کاملEntrapment of small molecules and nucleic acid-based drugs in liposomes.
In the past two decades there have been major advances in the development of liposomal drug delivery systems suitable for applications ranging from cancer chemotherapy to gene therapy. In general, an optimized system consists of liposomes with a diameter of approximately 100 nm that possess a long circulation lifetime (half-life >5 h). Such liposomes will circulate sufficiently long to take adv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochimica et biophysica acta
دوره 1414 1-2 شماره
صفحات -
تاریخ انتشار 1998